Maximum Independent Set Cover Pebbling Number of an m-ary Tree

A. Lourdusamy ${ }^{1}$, C. Muthulakhmi @ Sasikala ${ }^{2}$ and T. Mathivanan ${ }^{3}$
1,3 Department of Mathematics St. Xavier's College, Palayamkottai - 627002.
lourdusamy15@gmail.com
tahit_van_man@yahoo.com
Assistant Professor in mathematics, Sri Paramakalyani College, Alwarkurichi, India.

Abstract

A pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. A graph is said to be cover pebbled if every vertex has a pebble on it after a series of pebbling moves. The maximum independent set cover pebbling number of a graph G is the minimum number, $\rho(G)$, of pebbles required so that any initial configuration of $\rho(G)$ pebbles can be transformed by a sequence of pebbling moves so that after the pebbling moves the set of vertices that contains pebbles form a maximum independent set S of G. In this paper, we determine the maximum independent set cover pebbling number of an m-ary tree.

Key words: Graph pebbling, cover pebbling, maximum independent set cover pebbling, m-ary tree.

1. Introduction

Given a graph G, distribute k pebbles on its vertices in some configuration, call it as C. Assume that G is connected in all cases. A pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. [1] The pebbling number $\pi(G)$ is the minimum number of pebbles that are sufficient, so that for any initial configuration of $\pi(G)$ pebbles, it is possible to move a pebble to any root vertex v in G . [2] The cover pebbling number $\gamma(G)$ is defined as the minimum number of pebbles needed to place a pebble on every vertex of the graph using a sequence of pebbling moves, regardless of the initial configuration. A set S of vertices in a graph G is said to be an independent set (or an internally stable set) if no two vertices in the set S are adjacent. An independent set S is maximum if G has no independent set S^{\prime} with $\left|S^{\prime}\right|>|S|$.

We introduce the concept maximum independent set cover pebbling number in [4]. The maximum independent set cover pebbling number, $\rho(G)$, of a graph G, to be the minimum number of pebbles that are placed on $V(G)$ such that after a sequence of pebbling moves, the set of vertices with pebbles forms a maximum independent set S of G, regardless of their initial configuration. In this paper, we determine the maximum independent set cover pebbling number $\rho(G)$ for an m-ary tree.

Notation: $f(a)$ denotes the number of pebbles placed at the vertex a. Also $f(G)$ denotes the number of pebbles on the graph G.

2. Maximum independent set cover pebbling number of an \mathbf{m}-ary tree

Definition 2.1. A complete m-ary tree, denoted by M_{n}, is a tree of height n with m^{i} vertices at distances i from the root. Each vertex of M_{n} has m children except
for the set of m^{n} vertices that are at distance n away from the root, none of which have children. The root is denoted by R_{n}.

Or Simply a complete m-ary tree with height n, denoted by M_{n}, is an m-ary tree satisfying that v has m children for each vertex v not in the nth level.

Theorem 2.2. (i) $\rho\left(\mathrm{M}_{0}\right)=1$ (obvious).
(ii) $\rho\left(M_{1}\right)=4 m-3(m \geq 3)$ and if $m=2$ then $\rho\left(M_{1}\right)=6$. Since, for $m \geq 3, M_{1} \equiv$ $K_{1, \mathrm{~m}}[4]$ and for $\mathrm{m}=2, \mathrm{M}_{1} \equiv \mathrm{P}_{3}$, the path of length two[5].
(iii) $\rho\left(\mathrm{M}_{2}\right)=16 \mathrm{~m}^{2}-12 \mathrm{~m}+1$.

Proof of (iii). Note that M_{2} contains $\mathrm{m}-\mathrm{M}_{1}$'s as subtrees which are all connected to the root R_{2} of M_{2}. Let $\mathrm{R}_{11}, \mathrm{R}_{12}, \ldots, \mathrm{R}_{1 \mathrm{~m}}$ be the root of the $\mathrm{m}-\mathrm{M}_{1}$'s (say $\mathrm{M}_{11}, \mathrm{M}_{12}, \ldots$, $M_{1 m}$). In general, M_{n} contains $m-M_{n-1}$'s as subtrees which are all connected to the root R_{n} of M_{n}. Let $R_{(n-1) 1}, R_{(n-1) 2}, \ldots, R_{(n-1) m}$ be the root of the $m-M_{(n-1)}$'s. Choose the rightmost vertex of this subtree, label it by v. Put $16 \mathrm{~m}^{2}-12 \mathrm{~m}$ pebbles on this vertex. Then we cannot cover the maximum independent set of M_{2}. Thus $\rho\left(M_{2}\right) \geq 16 \mathrm{~m}^{2}$ $12 \mathrm{~m}+1$.

Now consider the distribution of $16 \mathrm{~m}^{2}-12 \mathrm{~m}+1$ pebbles on the vertices of M_{2}. According to the distribution of these amounts of pebbles, we find the following cases:

Case 1: $\mathrm{f}\left(\mathrm{M}_{1 \mathrm{i}}\right) \geq 4 \mathrm{~m}-3$, where $1 \leq \mathrm{i} \leq \mathrm{m}$.

Clearly we are done if $f\left(R_{2}\right) \geq 1$. So assume that, $f\left(R_{2}\right)=0$. This implies that $\sum_{i=1}^{m} f\left(M_{1 i}\right)=16 m^{2}-12 m+1$. Any one of the m^{2} paths (of length two) leading from the root R_{2} to the bottom of M_{2} must contain at least four pebbles and hence
we are done, since any one the subtree contains at least $\left\lceil\frac{16 m^{2}-12 m+1}{m}\right\rceil \geq 16 m-12+1$ pebbles.

Case 2: $\mathrm{f}\left(\mathrm{M}_{1 \mathrm{i}}\right) \leq 4 \mathrm{~m}-4$, for all $\mathrm{i}(1 \leq \mathrm{i} \leq \mathrm{m})$
This implies that $f\left(R_{2}\right) \geq 16 m^{2}-12 m+1-m(4 m-4)=12 m^{2}-8 m+1$. We need $2 m(4 m-3)+1$ pebbles at R_{2}. But $f\left(R_{2}\right)-2 m(4 m-3)-1>0$.

Case 3 : $f\left(M_{1 i}\right) \geq 4 m-3$ for some $\mathrm{i}(1 \leq \mathrm{i} \leq m)$.

Let $\mathrm{t} \geq 1$ subtrees of M_{2} contains at least $4 \mathrm{~m}-3$ pebbles. Note that, for every subtree (except one subtree that contains $4 \mathrm{~m}-3$ or more pebbles, we have 16 m pebbles to cover its maximum independent set.

Let $\mathrm{f}\left(M_{1 j}^{\prime}\right)=\mathrm{a}_{\mathrm{j}}$ where $\mathrm{a}_{\mathrm{j}} \leq 4 \mathrm{~m}-4$. Thus, to cover the maximum independent set of the subtree $M_{1 j}^{\prime}$, we have another $16 \mathrm{~m}-\mathrm{a}_{\mathrm{j}}$ pebbles somewhere on the graph. So, we can send $\left\lfloor\frac{16 m-a_{j}}{4}\right\rfloor \geq 4 m-\frac{a_{j}}{4}$ pebbles to the root R_{2} and then we move $2 m-\frac{a_{j}}{8}$ pebbles to the root $R_{1 j}^{\prime}$ of $M_{1 j}^{\prime}$. Thus $M_{1 j}^{\prime}$ contains $\mathrm{a}_{\mathrm{j}}+2 \mathrm{~m}-\frac{a_{j}}{8}=$ $2 \mathrm{~m}+\frac{7}{8} a_{j}$. But these numbers of pebbles are enough to cover the maximum independent set of $M_{1 j}^{\prime}$, or the value of $2 \mathrm{~m}+\frac{7}{8} a_{j} \geq 4 m-3$, and hence we are done. So using $(\mathrm{m}-\mathrm{t})\left(16 \mathrm{~m}-\mathrm{a}_{\mathrm{j}}\right)-\sum_{i=1}^{t} a_{j}$ pebbles, we cover the maximum independent set of the (m-t) subtrees that contains a_{j} pebbles. So we have at least $(t-1) 16 m+4 m+1$
pebbles on the t-subtrees plus R_{2} that are all contains $4 m-3$ or more pebbles. If $f\left(R_{2}\right)$ ≥ 1 then we are done. Otherwise we can always move a pebble to R_{2} using at most four pebbles from the remaining pebbles on the t-subtrees.
(iv) $\rho\left(M_{3}\right)=64 m^{3}-48 m^{2}+4 m-15(m \geq 3)$.

Proof of (iv). Clearly, M_{3} contains $\mathrm{m}-\mathrm{M}_{2}$'s as subtrees which are all connected to the root R_{3} of M_{3}. Consider the rightmost bottom vertex, say v, of M_{3} and put $64 m^{3}$ $48 \mathrm{~m}^{2}+4 \mathrm{~m}-16$ pebbles on the vertex v . Then we cannot cover the maximum independent set of M_{3}. Thus $\rho\left(M_{3}\right) \geq 64 m^{3}-48 m^{2}+4 m-15$.

Now consider the distribution of $64 m^{3}-48 m^{2}+4 m-15$ pebbles on the vertices of M_{3}. According to the distribution of these amounts of pebbles, we find the following cases:

Case 1: $f\left(M_{2 i}\right) \geq \rho\left(M_{2}\right)$ where $1 \leq i \leq m$.
Clearly we are done if $f\left(R_{2}\right)=0$, or 2 or $f\left(R_{2}\right) \geq 4$. So assume that $f\left(R_{2}\right)=1$ or 3 . This implies that, $\sum_{i=1}^{m} f\left(M_{2 i}\right) \geq 64 \mathrm{~m}^{3}-48 \mathrm{~m}^{2}+4 \mathrm{~m}-18$.pebbles. So, any one of the path (of length three) leading from the root R_{3} to the bottom row of M_{3} must contain at least eight pebbles. Thus we move a pebble to R_{3} and hence we are done.

Case 2: $\mathrm{f}\left(\mathrm{M}_{2 \mathrm{i}}\right)<\rho\left(\mathrm{M}_{2}\right)$ where $1 \leq \mathrm{i} \leq \mathrm{m}$.

We need $2 \mathrm{~m} \rho\left(\mathrm{M}_{2}\right)+5$ pebbles on the root vertex R_{3} of M_{3}. We have $\rho\left(\mathrm{M}_{3}\right)$-m $\rho\left(M_{2}\right)+m$ pebbles on the root vertex R_{3}. But, $\rho\left(M_{3}\right)-m \rho\left(M_{2}\right)+m-\left(2 m \rho\left(M_{2}\right)+5\right) \geq 0$. Since, $\rho\left(M_{3}\right)=64 m^{3}-48 m^{2}+4 m-15, \rho\left(M_{2}\right)=16 m^{2}-12 m+1$ and $m \geq 3$.

Case 3 : $f\left(M_{2 i}\right) \geq \rho\left(M_{2}\right)$ for some $\mathrm{i}(1 \leq \mathrm{i} \leq \mathrm{m})$.

Let $\mathrm{t} \geq 1$ subtrees contains $\rho\left(\mathrm{M}_{2}\right)$ or more pebbles. Label those subtrees by $\mathrm{M}_{2 \mathrm{i}}(1 \leq \mathrm{i}$ $\leq \mathrm{t})$ and label the other subtrees by $M_{2 j}^{\prime}(1 \leq \mathrm{i} \leq \mathrm{m}-\mathrm{t})$. Also, let $\mathrm{f}\left(M_{2 j}^{\prime}\right)=\mathrm{a}_{\mathrm{j}}$ where $\mathrm{a}_{\mathrm{j}}<\rho\left(\mathrm{M}_{2}\right)$. Note that, we have usually $\left(64 \mathrm{~m}^{2}+16\right)(\mathrm{m}-1)$ pebbles each to cover the maximum independent set of $\mathrm{M}_{2 \mathrm{i}}$'s and $M_{2 j}^{\prime}$'s, except one subtree $\mathrm{M}_{2 \mathrm{k}}(1 \leq \mathrm{k} \leq \mathrm{t})$ that contains $\rho\left(\mathrm{M}_{2}\right)$ or more pebbles.

Since $a_{j}<\rho\left(M_{2}\right)$, we have another $64 m^{2}+16-a_{j}$ pebbles that are in somewhere of the graph M_{3} to cover the maximum independent set of $M_{2 j}^{\prime}$. So we can send $\left\lfloor\frac{64 \mathrm{~m}^{2}+16-\mathrm{a}_{\mathrm{j}}}{8}\right\rfloor \geq 8 m^{2}+2-\frac{a_{j}}{8}$ pebbles to the root R_{3} and then we move $4 \mathrm{~m}^{2}+1-\frac{a_{j}}{16}$ pebbles to the root $R_{2 j}^{\prime}$ of $M_{2 j}^{\prime}$. Thus, $M_{2 j}^{\prime}$ contains $4 m^{2}+1+\frac{15}{16} a_{j}$ pebbles. But these number of pebbles are at least $\rho\left(\mathrm{M}_{2}\right)$ or it is enough to cover the maximum independent set of $M_{2 j}^{\prime}$ using the pebbles at $R_{2 j}^{\prime}$ plus a_{j} pebbles. Thus the t-subtrees $M_{2 i}$ plus R_{3} contains $\left(64 m^{2}+16\right)(t-1)+16 \mathrm{~m}^{2}-12 \mathrm{~m}+1$ or more pebbles. We know that $\mathrm{f}\left(\mathrm{M}_{2 \mathrm{i}}\right) \geq \rho\left(\mathrm{M}_{2}\right)$ where $1 \leq \mathrm{i} \leq \mathrm{t}$. Let $\mathrm{f}\left(\mathrm{R}_{3}\right)=1$ or 3 (Otherwise, we are done). We can move a pebble to R_{3}, using at most eight pebbles from the subtree that contains $16 \mathrm{~m}^{2}-12 \mathrm{~m}+9$ pebbles or more. And hence we are done.
(v) $\rho\left(M_{4}\right)=256 m^{4}-192 m^{2}+16 m^{2}-60 m+1$.

Proof of (v): Consider the rightmost bottom vertex, say v, of M_{4}, and put $256 m^{4}-192 m^{2}+16 m^{2}-60 m$ pebbles. Then we cannot cover the maximum independent set of M_{4}. Thus, $\rho\left(M_{4}\right) \geq 256 m^{4}-192 m^{2}+16 m^{2}-60 m+1$.

Now consider the distribution of $256 m^{4}-192 m^{2}+16 m^{2}-60 m+1$ pebbles on the vertices of M_{4}. According to the distribution of these amounts of pebbles, we find the following cases:

Case 1: $f\left(M_{\mathbf{a i}}\right) \geq \rho\left(M_{\mathrm{a}}\right)$ for all $\mathrm{i}(1 \leq \mathrm{i} \leq \mathrm{m})$.

Clearly we are done if $f\left(R_{4}\right) \geq 1$. So assume that $f\left(\mathbf{R}_{3}\right)=0$. This implies that $\sum_{i=1}^{m} f\left(M_{3 i}\right)=\rho\left(M_{4}\right)=256 m^{4}-192 m^{2}+16 m^{2}-60 m+1$. So any one of the m^{4} paths (of length four) leading from the root R_{4} to the bottom row of M_{4} contains at least sixteen 'extra' pebbles. Thus we can move a pebble to R_{4} and hence we are done.

Case 2: $f\left(M_{\mathbf{z i}}\right)<\rho\left(M_{\mathbf{a}}\right)$ for all i $(1 \leq \mathrm{i} \leq \mathrm{m})$.
We need $\mathbf{2} m \rho\left(M_{3}\right)+\mathbf{1}$ pebbles on the root vertex R_{4} of M_{4}. We have $\rho\left(M_{4}\right)-m\left[\rho\left(M_{\mathbf{a}}\right)-1\right]$ on the root vertex R_{4}. Since, $\rho\left(M_{4}\right)=256 m^{4}-192 m^{2}+16 m^{2}-60 m+1, \rho\left(M_{\mathrm{a}}\right)=64 m^{2}-48 m^{2}+4 m-15$ and $m \geq 3$, we get $f\left(R_{\mathbf{3}}\right) \geq 2 m \rho\left(M_{\mathbf{3}}\right)+1$ and hence we are done.

Case 3: $f\left(M_{\mathbf{3 i}}\right) \geq \rho\left(M_{\mathbf{a}}\right)$ for some i.
Similar to Case (iii) of previous theorems; using the hints, from that $256 \mathrm{~m}^{\mathbf{2}}+6 \mathbf{4} \mathrm{~m}$ pebbles, we can send $\left\lfloor\frac{256 m^{2}+64 m-a_{j}}{16}\right\rfloor \geq 16 m^{2}+4 m-\frac{a_{j}}{16}$ to the root R_{4} of M_{4}.

Theorem 2.3: For a complete m-ary tree $\mathrm{M}_{\mathrm{n}}(\mathrm{n} \geq 3)$, the maximum independent set cover pebbling number is given by,

$$
\rho\left(M_{n}\right)=(m-1) P+Q+\gamma_{n}=S_{1, n}+S_{2, n}+S_{3, n}
$$

where $P=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} m^{n-2 k-1} 2^{2 n-2 k}, Q=\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\left(2^{2 i}+(m-1) \sum_{j=1}^{n-2 i-1} m^{j-1} 2^{2 i+2 j}\right)$ and
$\gamma_{n}=\left\{\begin{array}{c}2^{n}, \text { if } n \text { is even } \\ 0, \text { if } n \text { is odd } .\end{array}\right.$

Proof. Consider the rightmost vertex of M_{n}, say v, and put $\rho\left(M_{n}\right)$ - 1 pebbles on the vertex v. Then we cannot cover a maximum independent set of M_{n}. Thus the lower bound follows.

We prove the upper bound of $\rho\left(M_{n}\right)$ by induction on n. For $n=3$ and $n=4$, this theorem is true by previous theorem (iv) and (v). So assume the result is true for the complete m-ary tree $M_{n-1}(n \geq 5)$.

Consider the distribution of $\rho\left(M_{n}\right)$ pebbles on the vertices of M_{n}. According to the distribution of these amounts of pebbles, we find the following cases:

Case (1): $f\left(M_{(n-1) i}\right)<\rho\left(M_{n-1}\right)$ for all $\mathrm{i}(1 \leq \mathrm{i} \leq \mathrm{m})$.
We need, $2 m \rho\left(M_{n-1}\right)+5$ pebbles on the root R_{n}, to cover the maximum independent set of M_{n}. We have to prove that $\rho\left(M_{n}\right)-m \rho\left(M_{n-1}\right)+m \geq 2 m \rho\left(M_{n-1}\right)+5$. It is enough to prove that, $\rho\left(M_{n}\right) \geq 3 m \rho\left(M_{n-1}\right)+2($ for $m \geq 3)$.

$$
\begin{equation*}
\rho\left(M_{n}\right) \geq \mathbf{3} m \rho\left(M_{n-1}\right)+2 \tag{1}
\end{equation*}
$$

From the $1^{\text {st }}$ term, by considering $\mathrm{k}=0$ we get,

$$
\begin{equation*}
\rho\left(M_{n}\right) \geq(m-1)\left(m^{n-1} 2^{2 n}\right) \tag{2}
\end{equation*}
$$

$S_{1, n-1}=(m-1) \sum_{k=0}^{\left[\frac{n-2}{2}\right]} m^{n-\mathbf{2} k-2} 2^{2 n-2 k-2}$

$$
\begin{align*}
& =(m-1)\left(m^{n-2} 2^{2 n-2}\right) \sum_{k=0}^{\left[\frac{n-2}{2}\right]} \frac{1}{m^{2 k} 2^{2 k}} \\
& S_{1, n-1} \leq \frac{8}{7}\left[(m-1)\left(m^{n-2}\right)\left(2^{2 n-2}\right)\right] \\
& S_{2, n-1}=\sum_{i=0}^{\left\lfloor\frac{n-2}{2}\right]}\left[2^{2 i}+(m-1) \sum_{j=1}^{n-2 i-2} m^{j-1} 2^{2 i+2 j}\right] \\
& =\sum_{i=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor} 2^{2 i}+(m-1) \sum_{i=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor} 2^{2 i} \sum_{j=1}^{n-2 i-2} m^{j-1} 2^{2 j} \\
& \leq \frac{\left(2^{2}\right)^{\left(\frac{n-2}{2}+1\right)}-1}{3}+(m-1) \sum_{i=0}^{\left.\frac{n-2}{2}\right]} 2^{2 i}\left(\frac{m^{n-2 i-2}}{m-1}\right)\left(\frac{4\left(4^{n-2 i-2}\right)}{3}\right) \\
& \leq \frac{2^{n}}{3}+\frac{\llbracket 4(m-1)\left(m \rrbracket^{n-2}\right) \llbracket\left(4 \rrbracket^{n-2}\right)}{3(m-1)} \sum_{i=0}^{\left\lfloor\frac{m-2}{2}\right\rfloor} 2^{2 i} m^{-2 i} 2^{-4 i} \\
& \leq \frac{2^{n}}{3}+\frac{\left[\left(m \rrbracket^{n-2}\right) \llbracket\left(4 \rrbracket^{n-1}\right)\right.}{3} \sum_{i=0}^{\left.\frac{n-2}{2}\right\rfloor} \frac{1}{m^{2 i} 2^{2 i}} \\
& S_{2, n-1} \leq \frac{2^{n}}{3}+\frac{4]\left(m \rrbracket^{n-2}\right) \llbracket\left(4 \rrbracket^{n-1}\right)}{11} \tag{4}\\
& \text { and } S_{3, n-\mathbf{1}}=\left\{\begin{array}{l}
0 \text { if } n \text { is even } \\
\mathbf{2}^{n-\mathbf{1}} \text { if } n \text { is odd }
\end{array}\right. \tag{5}
\end{align*}
$$

Equation (2) through (5) show that (1) holds if,
$(m-1)\left(m^{n-1} 2^{2 n}\right) \geq 3 m\left[\frac{8}{7}(m-1)\left(m^{n-2} 2^{2 n-2}\right)+\frac{2^{n}}{3}+\frac{\left.\left.4](m]^{n-2}\right) \mathbb{Z}(4]^{n-1}\right)}{11}+2^{n-1}\right]+2$

$$
\begin{aligned}
& (m-1)\left(m^{n-1} 2^{2 n}\right) \geq \frac{24}{7}(m-1)\left[\left(m^{n-1} 4^{n-1}\right)\right]+m 2^{n}+\frac{12 \rrbracket\left(m \rrbracket^{n-1}\right) \llbracket\left(4 \rrbracket^{n-1}\right)}{11}+\llbracket 3 m\left(2 \rrbracket^{n-1}\right. \\
& (m-1) \geq \frac{24(m-1)}{7(4)}+\frac{5\left(2^{n-1}\right)}{m^{n-2} \llbracket\left(4 \rrbracket^{n}\right)}+\frac{12}{44}+\frac{2}{m^{n-1} \llbracket\left(4 \rrbracket^{n}\right)} \\
& (m-1)-\frac{24(m-1)}{7(4)}-\frac{12}{44} \geq \frac{5\left(2^{n-1}\right)}{m^{n-2}\left(4^{n}\right)}+\frac{2}{m^{n-1} \llbracket\left(4 \rrbracket^{n}\right)} \\
& \frac{m-1}{7}-\frac{12}{44} \geq \frac{5}{m^{n-2}\left(2^{n+1}\right)}+\frac{2}{m^{n-1} \llbracket\left(2 \rrbracket^{2 n}\right)}
\end{aligned}
$$

which holds for $m \geq \mathbf{3}$ and $n \geq \mathbf{5}$. Also, $\rho\left(M_{n}\right) \geq \mathbf{3} m \rho\left(M_{n-1}\right)+2$ for $n=\mathbf{3}$ and $n=4$.

Case (2): $f\left(M_{(n-1) i}\right) \geq \rho\left(M_{n-1}\right)$ for all $\mathrm{i}(1 \leq \mathrm{i} \leq \mathrm{m})$.
Subcase 2.1: n is odd.
If $f\left(R_{n}\right)=0,2$ or $f\left(R_{n}\right) \geq 4$ then clearly we are done. So assume that $f\left(R_{n}\right)=1$ or 3 . Then, $\rho\left(\mathbf{M}_{\mathbf{n}}\right) \mathbf{l} 3$ or more pebbles on the $m\left(\mathbf{M}_{\mathbf{n}-1}\right)$'s. We know that, $\rho\left(M_{n}\right) \geq \mathbf{3} m \rho\left(M_{n-1}\right)+2$ and $\rho\left(M_{n-1}\right) \geq(m-1)\left(m^{n-2}\right)\left(2^{2 n-2}\right)$. We have, $\rho\left(M_{n}\right)-m \rho\left(M_{n-1}\right)$ extra pebbles on the vertices of $V\left(M_{n}\right)-\left\{R_{n}\right\}$. Thus at least one subtree $M_{(n-1) i}$ contains $2 \rho\left(M_{n-1}\right) \geq 2(m-1)\left(m^{n-2}\right)\left(2^{2 n}\right)$ extra pebbles, so at least one of the m^{n-1} paths leading to the root R_{n} from the bottom of the subtree has at least 2^{n} pebbles and hence we are done.

Subcase 2.2: n is even.
If $f\left(R_{n}\right) \geq \mathbf{1}$ then we are done. So assume that $f\left(R_{n}\right)=\mathbf{0}$. Like, Subcase 2.1, at least one of the m^{n-1} paths has 2^{n} or more pebbles and hence we are done.

Case (3): $f\left(M_{(n-1) i}\right) \geq \rho\left(M_{n-1}\right)$ for some i.

Let $t \geq \mathbf{1}$ subtrees contain $\rho\left(M_{n-1}\right)$ or more pebbles. Label those subtrees by $M_{(n-1) i}(1 \leq i \leq t)$ and label the other subtrees by $M_{(n-1) j}^{\prime}(1 \leq j \leq m-t)$. Also let $f\left(M_{(n-1) j}^{\prime}\right)=a_{j}$ where $a_{j}<\rho\left(M_{n-1}\right)$ and $1 \leq j \leq m-t$. Clearly we can supply at least one pebble to the root R_{n} of M_{n} for every 2^{n} extra pebbles on $M_{(n-1) i}(1 \leq i \leq t)$. Also, having one additional pebble in $M_{(n-1) j}^{\prime}(1 \leq j \leq m-t)$ is equivalent to have at least one pebble on the root vertex R_{n} of M_{n}.

Note that, we have usually used P pebbles each to cover the maximum independent set of $M_{(n-1) i}(1 \leq i \leq t)$ and $M_{(n-1) j}^{\prime}(1 \leq j \leq m-t)$, except one subtree, say $M_{(n-1) k}$, that contains $\rho\left(M_{n-1}\right)$ or more pebbles. Since $a_{j}<\rho\left(M_{n-1}\right)$, we have $P-a_{j}$ extra pebbles, that are in somewhere of the graph M_{n}, to cover the maximum independent set of $M_{(n-1) j}^{\prime}$. So we can send $\sum_{k=0}^{\left.\frac{n-1}{2}\right\rfloor} m^{n-\mathbf{2 k - 1}} 2^{n-\mathbf{2} k-1}-\frac{a_{j}}{2^{n+1}}$ pebbles to the root vertex $R_{(n-1) j}^{\prime}$ of $M_{(n-1) j}^{\prime}$. Thus $M_{(n-1) j}^{\prime}$ contains $a_{j}+\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} m^{n-2 k-1} 2^{n-2 k-1}-\frac{a_{j}}{2^{n+1}}$ pebbles. But these amounts of pebbles are at least $\rho\left(M_{n-1}\right)$ or it is enough to cover the maximum independent set of ${ }_{(n-1) j}^{\prime}$, using the pebbles at ${ }^{R_{(n-1) j}^{\prime}}$ plus a_{j} pebbles. Thus the t -subtrees $M_{\mathbf{2 i}}(1 \leq i \leq t)$ plus $R_{\mathbf{3}}$ contains $(t-1) \sum_{k=0}^{\left.\frac{n-1}{2}\right\rfloor} m^{n-\mathbf{2} k-1} 2^{n-\mathbf{2} k-1}+Q+\gamma_{n} \quad$ or more pebbles. We know that $f\left(M_{(n-1) i}\right) \geq \rho\left(M_{n-1}\right)$ where $1 \leq i \leq t$.

Subcase 3.1: n is odd.
Let $f\left(R_{n}\right)=1$ or $\mathbf{3}$ (otherwise we are done easily). Then we can move a pebble to
R_{n}, using at most 2^{n} pebbles from the subtree that contains at least $\rho\left(M_{n-1}\right)+2^{n}$ pebbles and hence we are done [since $\left.\rho\left(M_{n-1}\right) \geq(m-1)\left(m^{n-2}\right)\left(2^{2 n-2}\right)\right]$.

Subcase 3.2 : n is even.
Let $f\left(R_{n}\right)=\mathbf{0}$ (otherwise we are done). Like the Subcase 3.1, we can move a pebble to R_{n}, using at most 2^{n} pebbles (from the subtree that contains $\rho\left(M_{n-1}\right)+2^{n}$ pebbles or more).

References :

[1] F.R.K. Chung, Pebbling in hypercubes, SIAM J. Disc. Math 2(1989), 467-472.
[2] B.Crull, T.Cundiff, P.Feltman, G.H. Hurlbert, L.Pudwell, Z.Szaniszlo, Z.Tuza, The cover pebbling number of Graphs, (2004).
[3] G.Hurlbert, A survey of Graph Pebbling, Congressus Numerantium 139 (1999) 41-64.
[4] A. Lourdusamy, C. Muthulakshmi @ Sasikala and T. Mathivanan, Maximum independent set cover pebbling number of a Binary Tree, Sciencia Acta Xaveriana, Vol. 3(2) (2012), 9-20.
[5] A. Lourdusamy, C. Muthulakshmi @ Sasikala, Maximum independent set cover pebbling number of a Star, International Journal of Mathematical Archive- 3(2), 2012, 616-618.
[6] A. Lourdusamy, C. Muthulakshmi @ Sasikala and T. Mathivanan, Maximum independent set cover pebbling number of complete graphs and paths, submitted for publication.

