Sciencia Acta Xaveriana An International Science Journal ISSN. 0976-1152



Volume 5 No. 2 pp. 19-30 September 2014

# Maximum Independent Set Cover Pebbling Number of an m-ary Tree

A. Lourdusamy<sup>1</sup>, C. Muthulakhmi @ Sasikala<sup>2</sup> and T. Mathivanan<sup>3</sup>

- <sup>1,3</sup> Department of Mathematics St. Xavier's College,
  - Palayamkottai 627 002.
- <sup>1</sup> lourdusamy15@gmail.com
- <sup>3</sup> tahit\_van\_man@yahoo.com
- <sup>2</sup> Assistant Professor in mathematics,
  - Sri Paramakalyani College,
    - Alwarkurichi, India.

Abstract : A pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. A graph is said to be cover pebbled if every vertex has a pebble on it after a series of pebbling moves. The maximum independent set cover pebbling number of a graph G is the minimum number,  $\rho(G)$ , of pebbles required so that any initial configuration of  $\rho(G)$  pebbles can be transformed by a sequence of pebbling moves so that after the pebbling moves the set of vertices that contains pebbles form a maximum independent set S of G. In this paper, we determine the maximum independent set cover pebbling number of an m-ary tree.

**Key words**: Graph pebbling, cover pebbling, maximum independent set cover pebbling, m-ary tree.

# **1. Introduction**

Given a graph G, distribute k pebbles on its vertices in some configuration, call it as C. Assume that G is connected in all cases. A pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. [1] The pebbling number  $\pi(G)$  is the minimum number of pebbles that are sufficient, so that for any initial configuration of  $\pi(G)$  pebbles, it is possible to move a pebble to any root vertex v in G. [2] The cover pebbling number  $\gamma(G)$  is defined as the minimum number of pebbles needed to place a pebble on every vertex of the graph using a sequence of pebbling moves, regardless of the initial configuration. A set S of vertices in a graph G is said to be an independent set (or an internally stable set) if no two vertices in the set S are adjacent. An independent set S is maximum if G has no independent set S' with |S'| > |S|.

We introduce the concept maximum independent set cover pebbling number in [4]. The maximum independent set cover pebbling number,  $\rho(G)$ , of a graph G, to be the minimum number of pebbles that are placed on V(G) such that after a sequence of pebbling moves, the set of vertices with pebbles forms a maximum independent set S of G, regardless of their initial configuration. In this paper, we determine the maximum independent set cover pebbling number  $\rho(G)$  for an m-ary tree.

Notation: f(a) denotes the number of pebbles placed at the vertex a. Also f(G) denotes the number of pebbles on the graph G.

## 2. Maximum independent set cover pebbling number of an m-ary tree

**Definition 2.1.** A complete m -ary tree, denoted by  $M_n$ , is a tree of height n with  $m^i$  vertices at distances i from the root. Each vertex of  $M_n$  has m children except

for the set of  $m^n$  vertices that are at distance n away from the root, none of which have children. The root is denoted by  $R_n$ .

Or Simply a complete m -ary tree with height n, denoted by  $M_n$ , is an m -ary tree satisfying that v has m children for each vertex v not in the n th level.

**Theorem 2.2.** (i)  $\rho(M_0) = 1$  (obvious).

(ii)  $\rho(M_1) = 4m-3 \ (m \ge 3)$  and if m = 2 then  $\rho(M_1) = 6$ . Since, for  $m \ge 3$ ,  $M_1 \equiv K_{1,m}[4]$  and for m = 2,  $M_1 \equiv P_3$ , the path of length two[5].

(iii)  $\rho(M_2) = 16m^2 - 12m + 1$ .

**Proof of (iii).** Note that  $M_2$  contains m-M<sub>1</sub>'s as subtrees which are all connected to the root  $R_2$  of  $M_2$ . Let  $R_{11}, R_{12}, \ldots, R_{1m}$  be the root of the m-M<sub>1</sub>'s (say  $M_{11}, M_{12}, \ldots$ ,  $M_{1m}$ ). In general,  $M_n$  contains m-M<sub>n-1</sub>'s as subtrees which are all connected to the root  $R_n$  of  $M_n$ . Let  $R_{(n-1)1}, R_{(n-1)2}, \ldots, R_{(n-1)m}$  be the root of the m-M<sub>(n-1)</sub>'s. Choose the rightmost vertex of this subtree, label it by v. Put 16m<sup>2</sup>-12m pebbles on this vertex. Then we cannot cover the maximum independent set of  $M_2$ . Thus  $\rho(M_2) \ge 16m^2-12m+1$ .

Now consider the distribution of  $16m^2-12m+1$  pebbles on the vertices of M<sub>2</sub>. According to the distribution of these amounts of pebbles, we find the following cases:

**Case 1 :**  $f(M_{1i}) \ge 4m-3$ , where  $1 \le i \le m$ .

Clearly we are done if  $f(R_2) \ge 1$ . So assume that,  $f(R_2) = 0$ . This implies that  $\sum_{i=1}^{m} f(M_{1i}) = 16m^2 - 12m + 1$ . Any one of the m<sup>2</sup> paths (of length two) leading from the root R<sub>2</sub> to the bottom of M<sub>2</sub> must contain at least four pebbles and hence

we are done, since any one the subtree contains at least
$$\left[\frac{16m^2 - 12m + 1}{m}\right] \ge 16m - 12 + 1 \text{ pebbles.}$$

**Case 2:**  $f(M_{1i}) \le 4m-4$ , for all  $i (1 \le i \le m)$ 

This implies that  $f(R_2) \ge 16m^2 - 12m + 1 - m(4m - 4) = 12m^2 - 8m + 1$ . We need 2m(4m - 3) + 1 pebbles at  $R_2$ . But  $f(R_2) - 2m(4m - 3) - 1 > 0$ .

**Case 3 :**  $f(M_{1i}) \ge 4m-3$  for some i  $(1 \le i \le m)$ .

Let  $t \ge 1$  subtrees of M<sub>2</sub> contains at least 4m-3 pebbles. Note that, for every subtree (except one subtree that contains 4m-3 or more pebbles, we have 16m pebbles to cover its maximum independent set.

Let  $f(M'_{1j}) = a_j$  where  $a_j \le 4m-4$ . Thus, to cover the maximum independent set of the subtree  $M'_{1j}$ , we have another 16m- $a_j$  pebbles somewhere on the graph. So, we

can send  $\left\lfloor \frac{16m - a_j}{4} \right\rfloor \ge 4m - \frac{a_j}{4}$  pebbles to the root R<sub>2</sub> and then we move

$$2m - \frac{a_j}{8}$$
 pebbles to the root  $R_{1j}$  of  $M_{1j}$ . Thus  $M_{1j}$  contains  $a_j + 2m - \frac{a_j}{8} =$ 

 $2m + \frac{7}{8}a_j$ . But these numbers of pebbles are enough to cover the maximum

independent set of  $M_{1j}$ , or the value of  $2m + \frac{7}{8}a_j \ge 4m - 3$ , and hence we are

done. So using (m-t)(16m-a<sub>j</sub>)-  $\sum_{i=1}^{t} a_i$  pebbles, we cover the maximum independent set of the (m-t) subtrees that contains a<sub>i</sub> pebbles. So we have at least (t-1)16m+4m+1

pebbles on the t-subtrees plus  $R_2$  that are all contains 4m-3 or more pebbles. If  $f(R_2) \ge 1$  then we are done. Otherwise we can always move a pebble to  $R_2$  using at most four pebbles from the remaining pebbles on the t-subtrees.

(iv) 
$$\rho(M_3) = 64m^3 - 48m^2 + 4m - 15 \ (m \ge 3)$$
.

**Proof of (iv).** Clearly,  $M_3$  contains m-M<sub>2</sub>'s as subtrees which are all connected to the root  $R_3$  of  $M_3$ . Consider the rightmost bottom vertex, say v, of  $M_3$  and put  $64m^3$ - $48m^2$ +4m-16 pebbles on the vertex v. Then we cannot cover the maximum independent set of  $M_3$ . Thus  $\rho(M_3) \ge 64m^3$ - $48m^2$ +4m-15.

Now consider the distribution of  $64m^3$ -  $48m^2$ +4m-15 pebbles on the vertices of M<sub>3</sub>. According to the distribution of these amounts of pebbles, we find the following cases:

**Case 1 :**  $f(M_{2i}) \ge \rho(M_2)$  where  $1 \le i \le m$ .

Clearly we are done if  $f(R_2) = 0$ , or 2 or  $f(R_2) \ge 4$ . So assume that  $f(R_2) = 1$  or 3. This implies that,  $\sum_{i=1}^{m} f(M_{2i}) \ge 64m^3 - 48m^2 + 4m - 18$  .pebbles. So, any one of the

path (of length three) leading from the root  $R_3$  to the bottom row of  $M_3$  must contain at least eight pebbles. Thus we move a pebble to  $R_3$  and hence we are done.

**Case 2 :**  $f(M_{2i}) < \rho(M_2)$  where  $1 \le i \le m$ .

We need 2m  $\rho(M_2)$ +5 pebbles on the root vertex R<sub>3</sub> of M<sub>3</sub>. We have  $\rho(M_3)$ -m  $\rho(M_2)$ +m pebbles on the root vertex R<sub>3</sub>. But,  $\rho(M_3)$ -m  $\rho(M_2)$ +m-(2m  $\rho(M_2)$ +5)  $\geq 0$ . Since,  $\rho(M_3) = 64m^3 - 48m^2 + 4m - 15$ ,  $\rho(M_2) = 16m^2 - 12m + 1$  and  $m \geq 3$ .

**Case 3 :**  $f(M_{2i}) \ge \rho(M_2)$  for some i  $(1 \le i \le m)$ .

Let  $t \ge 1$  subtrees contains  $\rho(M_2)$  or more pebbles. Label those subtrees by  $M_{2i}$   $(1 \le i \le t)$  and label the other subtrees by  $M'_{2j}$   $(1 \le i \le m-t)$ . Also, let  $f(M'_{2j}) = a_j$  where  $a_j < \rho(M_2)$ . Note that, we have usually  $(64m^2+16)(m-1)$  pebbles each to cover the maximum independent set of  $M_{2i}$ 's and  $M'_{2j}$ 's, except one subtree  $M_{2k}$   $(1 \le k \le t)$  that contains  $\rho(M_2)$  or more pebbles.

Since  $a_j < \rho(M_2)$ , we have another  $64m^2 + 16 - a_j$  pebbles that are in somewhere of the graph  $M_3$  to cover the maximum independent set of  $M'_{2j}$ . So we can send

$$\left\lfloor \frac{64m^2 + 16 \cdot a_j}{8} \right\rfloor \ge 8m^2 + 2 - \frac{a_j}{8} \text{ pebbles to the root } R_3 \text{ and then we move}$$

$$4m^2+1-\frac{m_j}{16}$$
 pebbles to the root  $R'_{2j}$  of  $M'_{2j}$ . Thus,  $M'_{2j}$  contains  $4m^2+1+\frac{15}{16}a_j$ 

pebbles. But these number of pebbles are at least  $\rho(M_2)$  or it is enough to cover the maximum independent set of  $M'_{2j}$  using the pebbles at  $R'_{2j}$  plus  $a_j$  pebbles. Thus the t-subtrees  $M_{2i}$  plus  $R_3$  contains  $(64m^2+16)(t-1)+16m^2-12m+1$  or more pebbles. We know that  $f(M_{2i}) \ge \rho(M_2)$  where  $1 \le i \le t$ . Let  $f(R_3) = 1$  or 3 (Otherwise, we are done). We can move a pebble to  $R_3$ , using at most eight pebbles from the subtree that contains  $16m^2-12m+9$  pebbles or more. And hence we are done.

# $(v) \rho(M_{\bullet}) = 256m^{\bullet} - 192m^{3} + 16m^{2} - 60m + 1$

**Proof of (v):** Consider the rightmost bottom vertex, say v, of M<sub>4</sub>, and put  $256m^4 - 192m^3 + 16m^2 - 60m$  pebbles. Then we cannot cover the maximum independent set of M<sub>4</sub>. Thus,  $\rho(M_4) \ge 256m^4 - 192m^3 + 16m^2 - 60m + 1$ .

Now consider the distribution of  $256m^4 - 192m^3 + 16m^2 - 60m + 1$  pebbles on the vertices of M<sub>4</sub>. According to the distribution of these amounts of pebbles, we find the following cases:

**Case 1:**  $f(M_{a_i}) \ge \rho(M_a)$  for all  $i (1 \le i \le m)$ .

Clearly we are done if  $f(R_4) \ge 1$ . So assume that  $f(R_3) = 0$ . This implies that  $\sum_{i=1}^{m} f(M_{3i}) = \rho(M_4) = 256m^4 - 192m^3 + 16m^2 - 60m + 1$ So any one of the m<sup>4</sup>
paths (of length four) leading from the root R<sub>4</sub> to the bottom row of M<sub>4</sub> contains at

least sixteen 'extra' pebbles. Thus we can move a pebble to  $R_4$  and hence we are done.

**Case 2:**  $f(M_{ai}) < \rho(M_a)$  for all  $i (1 \le i \le m)$ .

We need  $2m\rho(M_3) + 1$  pebbles on the root vertex  $R_4$  of  $M_4$ . We have  $\rho(M_4) - m[\rho(M_3) - 1]$  on the root vertex  $R_4$ . Since,  $\rho(M_4) = 256m^4 - 192m^3 + 16m^2 - 60m + 1$ ,  $\rho(M_3) = 64m^3 - 48m^2 + 4m - 15$ and  $m \ge 3$ , we get  $f(R_3) \ge 2m\rho(M_3) + 1$  and hence we are done.

Case 3:  $f(M_{ai}) \ge \rho(M_a)$  for some i.

Similar to Case (iii) of previous theorems; using the hints, from that  $256m^3 + 64m$ 

pebbles, we can send  $\left\lfloor \frac{256m^3 + 64m - a_j}{16} \right\rfloor \ge 16m^3 + 4m - \frac{a_j}{16}$  to the root R<sub>4</sub> of M<sub>4</sub>.

**Theorem 2.3:** For a complete m-ary tree  $M_n$  ( $n \ge 3$ ), the maximum independent set cover pebbling number is given by,

 $\rho(M_n) = (m-1)P + Q + \gamma_n = S_{1,n} + S_{2,n} + S_{3,n}$ 

where 
$$P = \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} m^{n-2k-1} 2^{2n-2k}, \quad Q = \sum_{i=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \left( 2^{2i} + (m-1) \sum_{j=1}^{n-2i-1} m^{j-1} 2^{2i+2j} \right) \text{ and}$$
$$\gamma_n = \begin{cases} 2^n, if \ n \ is \ even \\ 0, if \ n \ is \ odd \end{cases}$$

**Proof.** Consider the rightmost vertex of  $M_n$ , say v, and put  $\rho(M_n) - 1$  pebbles on the vertex v. Then we cannot cover a maximum independent set of  $M_n$ . Thus the lower bound follows.

We prove the upper bound of  $\rho(M_n)$  by induction on n. For n=3 and n=4, this theorem is true by previous theorem (iv) and (v). So assume the result is true for the complete m-ary tree  $M_{n-1}$  (n  $\geq$  5).

Consider the distribution of  $\rho(M_n)$  pebbles on the vertices of  $M_n$ . According to the distribution of these amounts of pebbles, we find the following cases:

**Case (1):** 
$$f(M_{(n-1)i}) < \rho(M_{n-1})$$
 for all  $i (1 \le i \le m)$ .

We need,  $2m\rho(M_{n-1}) + 5$  pebbles on the root R<sub>n</sub>, to cover the maximum independent set of M<sub>n</sub>. We have to prove that  $\rho(M_n) - m\rho(M_{n-1}) + m \ge 2m\rho(M_{n-1}) + 5$ . It is enough to prove that,  $\rho(M_n) \ge 3m\rho(M_{n-1}) + 2$  (for m  $\ge 3$ ).

From the  $1^{st}$  term, by considering k=0 we get,

$$\rho(M_n) \ge (m-1)(m^{n-1}2^{2n}) \qquad \dots (2)$$

$$S_{1,n-1} = (m-1) \sum_{k=0}^{\left\lfloor \frac{m-2}{2} \right\rfloor} m^{n-2k-2} \, 2^{2n-2k-2}$$

$$\begin{aligned} = (m-1)(m^{n-2}2^{2n-2}) \sum_{k=0}^{p-2} \frac{1}{m^{2k}2^{2k}} \\ S_{1,n-1} &\leq \frac{8}{7} [(m-1)(m^{n-2})(2^{2n-2})] \\ & \dots \dots (3) \end{aligned}$$

$$\begin{aligned} S_{2,n-1} &= \sum_{i=0}^{\frac{n-2}{2}} \left[ 2^{2i} + (m-1) \sum_{j=1}^{n-2i-2} m^{j-1}2^{2i+2j} \right] \\ &= \sum_{i=0}^{\frac{n-2}{2}} 2^{2i} + (m-1) \sum_{i=0}^{\frac{n-2i}{2}} 2^{2i} \sum_{j=1}^{n-2i-2} m^{j-1}2^{2j} \\ &\leq \frac{(2^2)^{\binom{n-2}{2}+1} - 1}{3} + (m-1) \sum_{i=0}^{\frac{n-2i}{2}} 2^{2i} \left( \frac{m^{n-2i-2}}{m-1} \right) \left( \frac{4(4^{n-2i-2})}{3} \right) \\ &\leq \frac{2^n}{3} + \frac{\left[ 4(m-1)(m]^{n-2} \right] \left[ (4]^{n-2} \right]}{3(m-1)} \sum_{i=0}^{\frac{n-2i}{2}} 2^{2i} m^{-2i}2^{-4i} \\ &\leq \frac{2^n}{3} + \frac{\left[ (m]^{n-2} \right] \left[ (4]^{n-1} \right]}{3(m-1)} \sum_{i=0}^{\frac{n-2i}{2}} \frac{1}{m^{2i}2^{2i}} \\ S_{2,n-1} &\leq \frac{2^n}{3} + \frac{4 \left[ (m]^{n-2} \right] \left[ (4]^{n-1} \right]}{11} \\ & \dots \dots (4) \\ \text{and} S_{3,n-1} &= \begin{cases} 0 & \text{if $n$ is even} \\ 2^{n-1} & \text{if $n$ is odd} \\ & \dots \dots (5) \end{cases} \end{aligned}$$

Equation (2) through (5) show that (1) holds if,

$$(m-1)(m^{n-1}2^{2n}) \ge 3m \left[ \frac{8}{7}(m-1)(m^{n-2}2^{2n-2}) + \frac{2^n}{3} + \frac{4[(m]^{n-2})[(4]^{n-1})}{11} + 2^{n-1} \right] + 2$$

$$(m-1)(m^{n-1}2^{2n}) \ge \frac{24}{7}(m-1)[(m^{n-1}4^{n-1})] + m2^n + \frac{12[(m]^{n-1})[(4]^{n-1})}{11} + [3m(2]^{n-1}](m^{n-1})] + m2^n + \frac{12[(m]^{n-1})[(4]^{n-1}]}{11} + [3m(2]^{n-1}](m^{n-1})] + \frac{24(m-1)}{7(4)} + \frac{5(2^{n-1})}{m^{n-2}[(4]^n)} + \frac{2}{m^{n-1}[(4]^n)} + \frac{2}{m^{$$

which holds for  $m \ge 3$  and  $n \ge 5$ . Also,  $\rho(M_n) \ge 3m\rho(M_{n-1}) + 2$  for n = 3 and n = 4.

**Case (2):**  $f(M_{(n-1)i}) \ge \rho(M_{n-1})$  for all  $i (1 \le i \le m)$ .

#### Subcase 2.1: n is odd.

If  $f(R_n) = 0, 2 \text{ or } f(R_n) \ge 4$  then clearly we are done. So assume that  $f(R_n) = 1 \text{ or } 3$ . Then,  $\rho(M_n)| 3$  or more pebbles on the  $m(M_{n-1})$ 's. We know that,  $\rho(M_n) \ge 3m\rho(M_{n-1}) + 2$  and  $\rho(M_{n-1}) \ge (m-1)(m^{n-2})(2^{2n-2})$ . We have,  $\rho(M_n) - m\rho(M_{n-1})$  extra pebbles on the vertices of  $V(M_n) - \{R_n\}$ . Thus at least one subtree  $M_{(n-1)i}$  contains  $2\rho(M_{n-1}) \ge 2(m-1)(m^{n-2})(2^{2n})$  extra pebbles, so at least one of the  $m^{n-1}$  paths leading to the root  $R_n$  from the bottom of the subtree has at least  $2^n$  pebbles and hence we are done.

Subcase 2.2: n is even.

If  $f(R_n) \ge 1$  then we are done. So assume that  $f(R_n) = 0$ . Like, Subcase 2.1, at least one of the  $m^{n-1}$  paths has  $2^n$  or more pebbles and hence we are done.

Case (3):  $f(M_{(n-1)i}) \ge \rho(M_{n-1})$  for some i.

Let  $t \ge 1$  subtrees contain  $\rho(M_{n-1})$  or more pebbles. Label those subtrees by  $M_{(n-1)i} (1 \le i \le t)$  and label the other subtrees by  $M'_{(n-1)j} (1 \le j \le m-t)$ . Also let  $f(M'_{(n-1)j}) = a_j$  where  $a_j < \rho(M_{n-1})$  and  $1 \le j \le m-t$ . Clearly we can supply at least one pebble to the root  $R_n$  of  $M_n$  for every  $2^n$  extra pebbles on  $M_{(n-1)i} (1 \le i \le t)$ . Also, having one additional pebble in  $M'_{(n-1)j} (1 \le j \le m-t)$  is equivalent to have at least one pebble on the root vertex  $R_n$  of  $M_n$ .

Note that, we have usually used P pebbles each to cover the maximum independent set of  $M_{(n-1)i}$   $(1 \le i \le t)$  and  $M'_{(n-1)j}$   $(1 \le j \le m-t)$ , except one subtree, say  $M_{(n-1)k}$ , that contains  $\rho(M_{n-1})$  or more pebbles. Since  $a_j < \rho(M_{n-1})$ , we have  $P - a_j$  extra pebbles, that are in somewhere of the graph  $M_n$ , to cover the maximum

independent set of  $M'_{(n-1)j}$ . So we can send  $\sum_{k=0}^{\lfloor \frac{n-2}{2} \rfloor} m^{n-2k-1} 2^{n-2k-1} - \frac{a_j}{2^{n+1}}$  pebbles to the root vertex  $R'_{(n-1)j}$  of  $M'_{(n-1)j}$ . Thus  $M'_{(n-1)j}$  contains  $a_j + \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} m^{n-2k-1} 2^{n-2k-1} - \frac{a_j}{2^{n+1}}$  pebbles. But these amounts of pebbles are at least

 $\rho(M_{n-1})$  or it is enough to cover the maximum independent set of  $M'_{(n-1)j}$ , using the pebbles at  $R'_{(n-1)j}$  plus  $a_j$  pebbles. Thus the t-subtrees  $M_{2i}$   $(1 \le i \le t)$  plus  $R_2$ 

contains  $(t-1)\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} m^{n-2k-1}2^{n-2k-1} + Q + \gamma_n$  or more pebbles. We know that  $f(M_{(n-1)i}) \ge \rho(M_{n-1}) \text{ where } 1 \le i \le t$ 

#### Subcase 3.1: n is odd.

Let  $f(R_n) = 1$  or 3 (otherwise we are done easily). Then we can move a pebble to

 $R_n$ , using at most  $2^n$  pebbles from the subtree that contains at least  $\rho(M_{n-1}) + 2^n$  pebbles and hence we are done [since  $\rho(M_{n-1}) \ge (m-1)(m^{n-2})(2^{2n-2})$ ].

### Subcase 3.2 : n is even.

Let  $f(R_n) = 0$  (otherwise we are done). Like the Subcase 3.1, we can move a pebble to  $R_n$ , using at most  $2^n$  pebbles (from the subtree that contains  $\rho(M_{n-1}) + 2^n$  pebbles or more).

## **References :**

- [1] F.R.K. Chung, Pebbling in hypercubes, SIAM J. Disc. Math 2(1989), 467-472.
- [2] B.Crull, T.Cundiff, P.Feltman, G.H. Hurlbert, L.Pudwell, Z.Szaniszlo, Z.Tuza, The cover pebbling number of Graphs, (2004).
- [3] G.Hurlbert, A survey of Graph Pebbling, Congressus Numerantium 139 (1999) 41-64.
- [4] A. Lourdusamy, C. Muthulakshmi @ Sasikala and T. Mathivanan, Maximum independent set cover pebbling number of a Binary Tree, Sciencia Acta Xaveriana, Vol. 3(2) (2012), 9-20.
- [5] A. Lourdusamy, C. Muthulakshmi @ Sasikala, Maximum independent set cover pebbling number of a Star, International Journal of Mathematical Archive- 3(2), 2012, 616-618.
- [6] A. Lourdusamy, C. Muthulakshmi @ Sasikala and T. Mathivanan, Maximum independent set cover pebbling number of complete graphs and paths, submitted for publication.